<u>Лабораторная работа №1</u>

«Разработка измерительного прибора для мониторинга и управления технологическим оборудованием»

Цель работы:

- 1. Закрепление навыков схемотехнической разработки узлов сопряжения датчиков, состояния технологического оборудования с устройствами сбора и обработки информации.
- 1. Проектирование, отладка и испытание виртуальных приборов в среде LabVIEW.

Оборудование и документация

Региональный мультипользовательский центр прикладных информационных технологий "Политехник - National Instruments", оснащен многофункциональными устройствами сбора данных. NI 6024E, соединительными панелями BNC-2110 и симулятором NI Instrument Simulator. В качестве дополнительного оборудования используется генератор Г3-122, датчики и измерительные преобразователи.

Теоретические сведения

При проведении лабораторных работ используются возможности регионального мультипользовательского центра прикладных информационных технологий "Политехник - National Instruments".

Преимущества технологий National Instruments

Использование программно-аппаратных средств фирмы National-Instruments позволило в короткий срок создать современную лабораторную базу, обеспечивающую практическую поддержку курса "Технические измерения и приборы", повысить активность и самостоятельность студентов.

Порядок выполнения работы:

Студентам, уже прослушавшим базовый курс LabVIEW, в рамках практикума предлагается тот или иной тип датчика или измерительного преобразователя. По его описанию они должны разработать виртуальный прибор, обеспечивающий удобный интерфейс и оптимальный программный код, позволяющий использовать этот прибор при решении задач мониторинга и управления технологическим оборудованием. Им нужно также предложить схему подключения датчика к плате сбора информации, произвести нормирование входных сигналов, если указано — привязку к внешним событиям, фильтрацию. В рамках лабораторного практикума студенты знакомятся с датчиками, имеющими разный вид выходного сигнала (напряжение, ток, параллельный код, частотные и квадратурные сигналы).

Рассмотрим пример проектирования виртуального прибора "Измеритель угловой скорости на основе датчика ENV-05DB".

Пьезоэлектрический гироскоп ENV-05DB фирмы Murata предназначен для контроля угловой скорости и положения (угла наклона) движущегося

объекта. Его технические характеристики:

Напряжение питания	+5	Вольт
Максимальная угловая	80	Град/с
скорость		
Выходное напряжение	2,5+-0,3	Вольт
при нулевой скорости		
Чувствительность	22,2+-1,8	Милливольт/
		Град/с
Дрейф нуля	9	Град/с макс.
Полоса пропускания	7	Гц

Студентам нужно выполнить следующее:

- 1. Предложить схему подключения датчика к многофункциональной плате сбора данных.
- 2. Разработать процедуру задания параметров датчика, включающую в себя инициализацию платы сбора данных, определение фактического нулевого значения и задания чувствительности.
- 3. Разработать главную программу, обеспечивающую измерение угловой скорости и положения. Программа должна обеспечивать опрос датчика с привязкой к внешним событиям. В качестве генератора событий использовать счетчик платы сбора данных. Пример главной программы приведен на рис.1, 2.

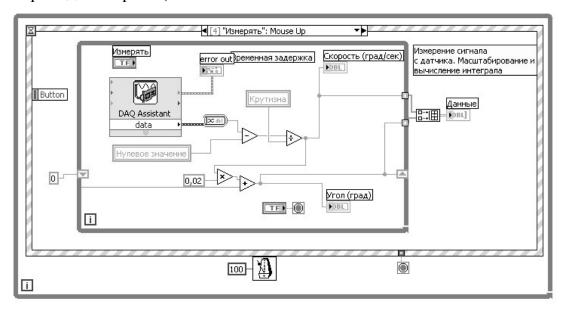


Рис. 1. Блок-диаграмма измерителя скорости

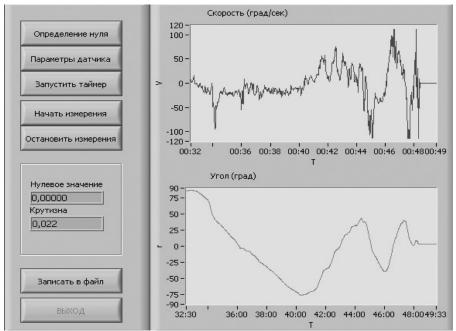


Рис 2. Передняя панель измерителя скорости

4. Включить, испытать и отладить прибор. Сформулировать предложения по коррекции дрейфа нуля.

При изучении интерфейсов программируемых приборов наряду с работой с симулятором NI Instrument Simulator студентам предлагается спроектировать драйвер для генератора Г3-122, имеющего интерфейс канала общего пользования (GPIB).

Примерный перечень работ приведен ниже.

- 1. Измеритель угловой скорости на основе датчика ENV-05DB
- 2. Измеритель угла наклона на основе инерциального датчика фирмы Моторола.
- 3. Измеритель положения и скорости на основе углового магнитного энкодера AM512B.
- 4. Измеритель положения и скорости на основе инкрементного датчика.
- 5. Прибор для измерения температуры, использующий различные типы датчиков.
- 6. Драйвер генератора Г3-122 (Интерфейсы программируемых приборов).

Отчет по лабораторной работе должен содержать:

- 1. цель работы;
- 2. краткое содержание работы;
- 3. полученные результаты;
- 4. анализ результатов и выводы.